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A TUNED-TRACE THEORY OF
INTERVAL-TIMING DYNAMICS
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Animals on interval schedules of reinforcement can rapidly adjust a temporal dependent variable,
such as wait time, to changes in the prevailing interreinforcement interval. We describe data on the
effects of impulse, step, sine-cyclic, and variable-interval schedules and show that they can be ex-
plained by a tuned-trace timing model with a one-back threshold-setting rule. The model can also
explain steady-state timing properties such as proportional and Weber law timing and the effects of
reinforcement magnitude. The model assumes that food reinforcers and other time markers have a
decaying effect (trace) with properties that can be derived from the rate-sensitive property of habit-
uation (the multiple-time-scale model). In timing experiments, response threshold is determined by
the trace value at the time of the most recent reinforcement. The model provides a partial account
for the learning of multiple intervals, but does not account for scalloping and other postpause
features of responding on interval schedules and has some problems with square-wave schedules.
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Humans and animals can readily learn to
anticipate the time when a reinforcing event
will occur. This process is termed interval tim-
ing. It is typically studied in well-trained ani-
mals under steady-state conditions where it is
characterized by two properties: (a) The tem-
poral dependent variable—wait time (pause)
on fixed-interval (FI) reinforcement sched-
ules, the average time of maximal responding
(peak time) on the peak-interval proce-
dure—is typically proportional to the to-be-
timed interval (proportional timing). (b) The
standard deviation of the temporal measure
is proportional to its mean. This is termed
scalar or Weber law timing (Dews, 1970; Gib-
bon, 1977; Staddon, 1965). Neither property
holds for every temporal schedule or tem-
poral dependent measure (Staddon & Higa,
1999; Zeiler & Powell, 1994), but for certain
standard situations these two properties are
reliably found.

It was for many years assumed that interval
timing requires much training—experience
with tens or even hundreds of intervals—be-
fore the two properties emerge. But Wynne
and Staddon (1988) showed that pigeons
could adapt rapidly to changing time to re-
inforcement. For example, one series of ex-
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periments used the response-initiated delay
(RID) schedule illustrated in Figure 1: After
food reinforcement, the animal is free to
make the operant response, a key peck, at any
time. Let us say that it responds after waiting
a time t s. This initiates an experimenter-con-
trolled clock that runs for a further time, T,
at the end of which another food reinforce-
ment is delivered. In two experiments, Wynne
and Staddon exposed pigeons to various ver-
sions of this procedure, including one in
which the independent variable was t 1 T,
and found a simple invariant relation: Time
to first response (wait time) is linearly related
to the time between food deliveries (inter-
reinforcement interval, IRI, in this case equal
to t 1 T) (i.e., proportional timing). More-
over, the slope of this function was the same
whether the average IRI varied from day to
day or changed only after several days at each
value. In a third experiment, using a positive
feedback procedure, they confirmed the in-
ference that pigeons can adjust their wait
time rapidly in response to changes in IRI.

The most direct test of the idea that a
change in IRI has an immediate effect on the
succeeding wait time is to present unpredict-
ably a single short (or long) IRI in a series of
constant longer (or shorter) IRIs. Higa and
Staddon used this impulse procedure in a se-
ries of studies (e.g., Higa, 1996; Higa, Wynne,
& Staddon, 1991; Staddon, Wynne, & Higa,
1991). A typical result is shown in Figure 2.
The data are striking: The effect of a short
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Fig. 1. One cycle of an RID schedule. The organism waits a time t before making the first operant response,
which initiates a schedule-controlled time T that terminates with food reinforcement. In most of our experiments T
was set so that t 1 T (the interfood interval) was the manipulated variable.

IRI interpolated into a series of longer IRIs is
to shorten the wait time in the following IRI,
and only in the following IRI. This effect oc-
curs, with only slight variations, when several
impulse intervals, closely or widely spaced,
are presented, as we illustrate in a moment.

Two other dynamic schedules are the step
(up or down) and cyclic. Step schedules re-
semble impulse schedules in that the prevail-
ing IRI changes up or down at a random
point in the experimental session. The differ-
ence is that on step schedules it stays changed
until the end of the session rather than re-
verting to the baseline value after just one
IRI. On cyclic schedules the IRI changes pro-
gressively up and down, according to a sine
or other periodic function. Performance on
the cyclic schedule usually follows the im-
pulse pattern: Wait time is proportional to
the preceding IRI (one-back tracking). But
on step schedules, the effect of the change
takes a few IRIs to settle down, more on step
up than step down. The relatively slow ad-
justment to step-up schedules may account
for the fact that the effect of single long im-
pulse intervals is much less than the effect of
single short intervals. Lejeune, Ferrara, Si-
mons, and Wearden (1997) and Church and
Lacourse (1998) have reported similar results
in experiments with the peak-interval proce-
dure and progressive-interval schedules.

Variable-interval (VI) schedules yield ap-
parently anomalous data. Wait times are very
short, and no one seems to have published
data showing a significant correlation be-
tween wait time and the duration of the pre-
vious IRI, even though IRI durations on VI
typically vary over a wide range.

THEORY
What is the process that underlies these dy-

namic effects? Numerous theories of steady-
state interval timing have been proposed, but
only three attempts seem to have been made
to explain the effects we have just described.
Machado (1997; see also Higa & Staddon,
1997) explored the dynamic implications of
a sequential-state model similar to the behav-
ioral theory of timing proposed by Killeen
and Fetterman (1988). Machado showed that
given appropriate values for a learning-rate
parameter, a, the effect of a single IRI might
dissipate rapidly, so that his model could sim-
ulate the one-back tracking result of the im-
pulse experiment. However, because Macha-
do’s main focus was on acquisition curves for
standard temporal schedules and steady-state
data for the learning of multiple intervals, he
did not attempt to account for the other dy-
namic results we have described.

Staddon and Higa (1991) and Higa and
Staddon (1997; see also Staddon, 2001) stud-
ied a diffusion-based model for temporal dy-
namics (the diffusion-generalization model).
The idea of this model is that time is repre-
sented spatially. The occurrence of reinforce-
ment increments activation at a point whose
distance from the origin is proportional to
time elapsed since the time marker (reinforc-
er delivery, on fixed-interval [FI] and RID
schedules). Activation diffuses constantly in
real time. Response rate is represented by the
height of the activation surface at each in-
stant of time within the to-be-timed interval.
This rather cumbersome model can simulate
steady-state results from procedures that re-
quire the organism to learn about two or
more intervals, such as mixed FI x FI y sched-
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Fig. 2. Top: heavy line: normalized average wait time, WTnorm 5 (WT 2 WTmin)/(WTmax 2 WTmin), during a
randomly selected 32-interval period during the baseline RID 15-s condition (10 sessions). Light lines, open symbols:
data for 4 individual pigeons. Bottom: similar data during the impulse condition, in which a single 5-s IRI occurred
at a random point once per session. The location of the 5-s interval is shown by the dashed vertical line, and the
points to left and right are the data from the 15 preceding and following intervals (from Higa & Staddon, 1997,
Figure 3).

ules, as well as data from step-up and step-
down experiments (Figure 3). The diffusion-
generalization model cannot duplicate the
data from cyclic schedules, however. Rather
than simply tracking the input cycle with a lag
of one interval, the model yields a skewed
output that sometimes lags the input by sev-
eral intervals.

Wynne and Staddon (1988) proposed a
simple model that nevertheless does about as

well as any other with these dynamic data.
Linear waiting is the idea that the wait time in
IRI N 1 1 is simply a linear function of the
preceding IRI N. For RID schedules, this
amounts to the following relation:

tN11 5 a(tN 1 TN) 1 b, 0 , a , 1, (1)

where tN is wait time in interval N, TN is delay
in interval N, and a and b are constants; b is
generally close to zero. Obviously this model
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Fig. 3. Average data from a step experiment simulated by the diffusion-generalization model (from Higa & Stad-
don, 1997, Figure 11).

can simulate all those data for which wait
time is proportional to the preceding IRI,
which is to say most of the impulse experi-
ments, sine tracking and step down—but not
step up, in which there is typically a substan-
tial lag. However, linear waiting does not du-
plicate behavior on VI schedules: very short
wait times that are essentially uncorrelated
with the preceding IRI. The problem seems
to be that linear waiting permits no effect of
IRIs earlier than the preceding IRI. Yet the
lagged effects on step schedules, as well as
some effects of daily and longer shifts in
schedule parameters (Wynne & Staddon,
1992), show that earlier IRIs do exert some
effect on current wait time. Linear waiting
also cannot, without additional assumptions,
duplicate the Weber law property of timing.

The Multiple-Time-Scale Theor y

In this paper we discuss a dynamic model
that combines features of linear waiting and
the habituation-based multiple-time-scale
(MTS) model of interval timing (Staddon &
Higa, 1996, 1999). We first show that this
model can handle standard steady-state tim-
ing data: proportional timing and the Weber
law property. We go on to explore its ability
to simulate dynamic interval-timing data.

The basis of the MTS theory is simple: (a)
An event, such as a time marker in an inter-
val-timing experiment, has an aftereffect.
This is usually termed short-term memory,
but we have no commitment to that term and

it is sometimes inappropriate, in that event
aftereffects may sometimes be very persistent.
(b) This aftereffect, which we will term a mem-
ory trace, declines with postevent time accord-
ing to a negatively accelerated function, rap-
idly at first, more slowly later. (c) An adequate
model for the dynamics of the trace is pro-
vided by a chain of thresholded integrators.
(d) Wait time is determined by the value of
the trace at the time of reinforcement.

The model represented by Properties a
through c, plus an additional assumption that
response strength is equal to the difference
between the direct effect of the stimulus and
the remembered effect (trace strength), was
first proposed to account for a ubiquitous
property of habituation: that habituation af-
ter widely spaced stimuli, though weaker than
after a closely spaced series, may be more per-
sistent (rate sensitivity; Staddon & Higa,
1996). More recently, we have suggested that
the memory-trace component of the MTS ha-
bituation model can provide the ‘‘clock’’ for
steady-state interval timing (Property d; Stad-
don, 2001; Staddon & Higa, 1999).

The model. Figure 4 shows how the MTS
model works. At the top is a single unit of the
system. When a stimulus such as a time mark-
er occurs, the unit gets a brief input that in-
jects a certain amount of integrator activa-
tion, X1(t). In most of our simulations, X1(t)
is set to unity during one time step, corre-
sponding to the occurrence of the time mark-
er (food reinforcement), and is zero at all
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Fig. 4. Top: single-integrator (single-unit) stimulus-
type habituation model. Each stimulus, X, increments a
leaky integrator. The integrated effects of past stimuli, VI,
are subtracted from the current stimulus, X, and the
above-threshold difference, X 2 VI 2 u, is the response
strength Vo. Bottom: two cascaded units; the input to the
second is the output of the first. The system output is the
output of the last unit in the cascade.

other times. At stimulus offset, the integrator
activation decays at a rate determined by its
time constant. The equations for the single
unit shown at the top of Figure 4 are

X (t) 2 V (t 2 1), if X (t) . u1 1 2X (t) 5 (2)2 50, otherwise,

V (t) 5 a V (t 2 1) 1 b X (t),1 1 1 1 1

0 , a , 1, b . 0, (3)1 1

where V1(t 2 1) is the integrated effect of
past stimuli at time t 2 1, X2(t) is the output
at time t, u is a threshold, a1 is a discrete-time
constant that reflects the period over which
past stimuli contribute, X1(t) is the effect of
a stimulus (here, the time marker) at time t,
and b1 is the weighting of the stimulus effect.
A nonnegative threshold (u $ 0) is necessary
to prevent the output, X2(t), from going neg-
ative, which implies unmeasureable negative
behavior.

The single-unit system at the top of Figure
4 does not show rate sensitivity, because re-
covery rate (i.e., the decay of V1 when X1 is
zero) is determined solely by a1, which is con-
stant and independent of system history. Rate
sensitivity requires at least two units in cas-
cade, as in the bottom of Figure 4, with the
second time constant, a2, slower than the
first: a1 , a2. The input to the second unit is
just the output of the first. For a multiunit
system, the input to each unit is the output
of the preceding unit. The inhibitory feed-

back loop associated with each integrator
(Equations 2 and 4, below) means that acti-
vation of each integrator reduces the output
of each unit, and hence reduces the input to
the next unit in line.

The equations for the jth unit of the cas-
cade are

X (t) 2 V (t 2 1),j21 j21
if X (t) . uX (t) 5 j j (4)j 

0, otherwise,

V (t) 5 a V (t 2 1) 1 b X (t),j j j j j

0 , a , 1, b . 0, (5)j j

where Vj is the integrator output of the jth
unit in the cascade ( j . 1), Xj21 is the output
of the preceding unit, and aj and bj are con-
stants. In all simulations, bj is the same for all
units, and aj is a one-parameter (l) exponen-
tial function of j—so that the number of free
parameters is much less than the number of
units (see legend to Figure 6 for details).

The output of each unit is thresholded (all
thresholds, uj, are zero in our simulations),
which ensures that units receive an input only
when the stimulus, X1, is present. These pass-
through thresholds are essential to the rate-
sensitive property of the system. Without
them, the system memory (the sum of V val-
ues, see below) will always persist longer after
massed training than after spaced training.
For simulating interval timing over the usual
range, a system with eight or more units is
necessary. Although the notation we use here
is a little different, this part of the model is
identical to Staddon and Higa’s (1996) MTS
habituation model.

The stimulus (X1) for this system is a psy-
chological variable. Just what physical prop-
erty of the time marker—its onset or offset,
duration, or some combination—corre-
sponds to X1(t) is something to be discovered
empirically. For the predictions we will dis-
cuss, all that is necessary is that each occur-
rence of the time marker (e.g., food rein-
forcement) has the same effect and that
larger reinforcers have larger effects.

Tuned trace. As a model for habituation, this
system embodies the idea that the strength of
a habituated response is proportional to the
strength of the stimulus minus the strength
of the memory for the stimulus: Response
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equals stimulus minus memory trace. With
repeated stimulation, the memory for the
stimulus increases (to some asymptote). Ha-
bituation occurs because the difference be-
tween the memory and the effect of the stim-
ulus is reduced as the strength of the memory
trace increases.

The activation levels of the integrators, Vj,
correspond to the memory of this system. It
is relatively straightforward to show (Equa-
tion 2 and Appendix) that with thresholds all
equal to zero, the response of an M unit cas-
cade to an input is equal to the stimulus
strength X1(t) minus the sum of the V values.
Thus, the value of the memory trace, n(t), of
the cascade is simply the sum of the integra-
tor values Vi:

M
n(t) 5 V (t), (6)O i

i51

where M is the number of integrators in the
cascade. It is n(t) that comprises the ‘‘clock’’
in this system.

When the MTS timer is in the steady state
with an FI input series, the trace n(t) is a pe-
riodic signal, with a period equal to the tim-
ing interval T. We show in the Appendix that
a cycle of the trace function has the form

M
tn(t) 5 V (T)a , (7)O i i

i51

where Vi(T) is activation of integrator i at
stimulus offset (i.e., at the beginning of the
to-be-timed interval), ai is the time constant
of the ith integrator, and M is the number of
integrators in the cascade. Thus the form of
the trace is a sum of exponentials. Its form
depends not only on the number of integra-
tors and their time constants but also on their
activation values when the interval begins
(i.e., the initial condition of the system, a vec-
tor of M-V values).

The trace n(t) from the cascade of habitu-
ation units (i.e., Equations 6 and 7) consti-
tutes a sort of clock. However, the form of the
MTS trace is not fixed, but depends on the
system history. This is easy to see intuitively.
Consider the trace after a series of closely
spaced stimuli (time markers). Because the
stimuli are closely spaced, the early, fast in-
tegrators in the cascade will decay little in be-
tween stimuli and so will retain high activa-
tion—and will thus reduce the input to later,

slower integrators some of which may not be
activated at all. When stimuli are no longer
presented, the fast integrators early in the cas-
cade (low i values in Equation 6) will have
high initial (Vi) values compared to the later,
slower integrators. Hence, the trace (Equa-
tion 6) will decay rapidly, and the real time
to reach a fixed threshold will be short. Con-
versely, after a training series of widely spaced
stimuli, early, fast integrators will lose activa-
tion between stimuli, allowing input to the
later, slower integrators, which will tend to
dominate, and the trace will decay slowly.
Hence, the time to reach the same fixed
threshold will be longer. MTS is thus a tuned
trace model. The decay rate of the trace,
which is determined by the weights Vi(T) in
Equation 6, is tuned by the past history of the
system: fast after a massed training series,
slow after a spaced series (see, e.g., Staddon,
Higa, & Chelaru, 1999, Figure 1). The exact
values for Vi(T), in the case of an FI schedule,
are computed in the Appendix.

Response rule. The simplest way to use the
trace as a timer is via a response threshold.
The value of the trace, n, is monotonically re-
lated to time, so that a fixed response thresh-
old will initiate responding at the same time,
so long as n decays in the same way after each
occurrence of the time marker. The question
for a dynamic model is, how is the threshold
set?

We have found that the simplest rule seems
to be the best. The response threshold, w, is
set by each occurrence of reinforcement as
follows:

w(N) 5 nrft(N 2 1) 1 jX(N), (8)

where N is the IRI number, X(N) is the re-
inforcement magnitude at the beginning of
the current IRI, nrft(N 2 1) is the trace value
at the end of the preceding interval (i.e., at
the moment just before reinforcement), and
j is a constant. In words, the system remem-
bers the value of the declining trace at the
instant of each reinforcement [reinforce-
ment memory: RFM(N) 5 nrft(N 2 1), see
the Appendix], and begins responding when
the trace declines to that value plus a con-
stant increment, j, scaled to the prevailing re-
inforcement magnitude.

Notice that this rule means the threshold
is set by each reinforcement (as in linear wait-
ing). But, unlike linear waiting, this model
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Fig. 5. Response rule for the MTS timing model. Heavy line: trace strength during a sequence of two long (16
time steps) followed by two short (8 time steps) IRIs. Up-spikes indicate reinforcements. Light line: response thresh-
old, set to a constant plus the value of the trace at the preceding reinforcement (reinforcement memory: RFM; see
Appendix). Gray squares: wait time in the four intervals (right y axis). Wait time adjusts immediately following the
long-short transition.

does not imply instantaneous adaptation to
any new to-be-timed interval—because the
tuning of the trace is not instantaneous. It
takes several intervals—more following an
upshift (short → long) than a downshift—fol-
lowing the transition from one interval value
to another before the trace settles down to its
new form. Thus, the MTS timing model in-
corporates both a fast and a slow process, al-
though these do not correspond in any sim-
ple way to the conventional cognitive idea of
short- and long-term memory ‘‘stores.’’

Figure 5 shows the relations among trace
strength (zigzag line: left y axis), threshold
(step function), and time to first response
(wait time: intersection of threshold and
trace lines; the value is plotted on the right y
axis, gray squares) before and after the tran-
sition from a long to a short IRI. For the first
two IRIs the wait time is relatively long (first
two squares), but as soon as the prevailing IRI
shortens, the threshold shifts and wait time
decreases (last two squares).

SIMULATIONS

Steady State

The steady-state properties of this model
follow from the steady-state form of the trace.
A compact way to represent the steady-state
trace after training under different fixed in-
tervals is shown in Panel 2 of Figure 6, which
shows traces normalized as a proportion of
the prevailing IRI along the time axis and dis-
placed along the y axis by an amount nrft so
that all are zero at the time of reinforcement
(end of the to-be-timed interval). The con-
stant threshold in Equation 8 corresponds to
a horizontal line in this plot (dashed line).
The figure shows steady-state traces after ex-
tended training at three IRIs over the range
of 10 to 600 time steps. Each trace decays at
a rate appropriate to its training IRI: slowly
after 600 time-step training and rapidly after
10 time-step training, so that the normalized
traces more or less superimpose over most of
the range. Because the traces are close to-



112 J. E. R. STADDON et al.

Fig. 6. Steady-state properties predicted by the MTS timing model with threshold noise. Top: wait-time distributions
for three IRIs, plotted as a proportion of the IRI (x axis). Panel 2: steady-state traces for three IRIs plotted as a proportion
of the training IRI and translated along the y axis so that nrft is zero for all (Point 1,0). Horizontal dashed line indicates
the response threshold. The rectangle on the left indicates the noise distribution added to the threshold (Equation 9)
to produce the distributions in the top panel. Panel 3: mean wait time for IRIs ranging from 10 to 600 time steps.
Bottom: coefficient of variation (CoV) for steady-state wait-time distributions from IRIs of 10 to 600 time steps. All curves
were generated by the same 14-unit model with X1(t) 5 1, aj 5 1 2 e2lj and l 5 .675, bj 5 .04, j 5 .14, and h 5 .04.
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Fig. 7. The effect of reinforcement magnitude on
wait time on an FI schedule. Heavy solid line, open
squares: data from well-trained pigeons on an FI 60-s
schedule, with five different reinforcement durations in-
termixed in each daily session (L. Talton, unpublished
data). Gray line: model, intermixed durations. Dashed
line: model, steady-state wait time at each of five rein-
forcement magnitudes. Model parameters as in Figure 6.

gether in the region of the threshold, the
model yields a wait time that is proportional
to the IRI: proportional timing (shown in the
third panel).

The three distributions at the top of Figure
6 show the effect of adding a small rectan-
gular noise term, e, with a mean of zero and
unit range with multiplier h 5 .04, to the
threshold (rectangle on the y axis on the
threshold line in Panel 2 in Figure 6):

w(N) 5 nrft(N 2 1) 1 jX(N) 1 he(t). (9)

Equation 9 is just Equation 8 with an added
noise term. We used this model for all the
simulations that follow. With the addition of
threshold noise, variability (standard devia-
tion) in wait time is approximately propor-
tional to the mean wait time (i.e., an approx-
imately constant coefficient of variation,
CoV), which is the condition for Weber law
or scalar timing, shown in the bottom panel
for a range of training intervals from 10 to
600 time steps. Because the trace in the re-
gion of the threshold is not perfectly linear,
symmetrical threshold variation yields a
slightly asymmetrical wait-time distribution
(top panel) in accordance with data (e.g.,
Church, Meck, & Gibbon, 1994; Wynne &
Staddon, 1988). Thus, this model duplicates
the most basic steady-state properties of in-
terval timing: proportional timing, Weber law
timing, and a right-skewed distribution of
wait times.

Reinforcement-magnitude effects. Most clock
models for timing separate the timing func-
tion, the clock, from the process that starts
and stops the clock. But in the MTS timing
theory, the two are not separable. If the clock
is just memory for the time marker, then dif-
ferent time markers should have different ef-
fects. ‘‘Time’’ should appear to flow faster or
slower depending on the memorability of the
time marker. In all the experiments we dis-
cuss here, food delivery—the reinforcer—is
the time marker. Small reinforcers are, by
many measures, less memorable than large
ones, so we may expect the MTS model to
predict timing differences when reinforcer
magnitude is varied.

In fact, the predicted effects of varying re-
inforcer magnitude depend on exactly how—
over what period of time—it is varied. The
steady-state behavior of the model is indepen-
dent of reinforcement magnitude, so long as

it is constant. In the dynamic simulations we
discuss in a moment, X(t) equals 1 (reinforce-
ment) or 0 (the time steps between reinforc-
ers), but the results would be the same for
any constant value of X(t). By Equation 8, the
response threshold is set relative to the mag-
nitude of the most recent reinforced trace
value, nrft, whatever that may be. So if the
trace is the same from interval to interval (as
it will be if both interval duration and rein-
forcer magnitude are constant), wait time will
also be the same, because trace shape is al-
ways the same under these conditions (Figure
6). This prediction (Figure 7, dashed line)
conforms to data: Wait time on FI schedules
is essentially independent of reinforcement
magnitude in the steady state (cf. Hatten &
Shull, 1983; Lowe, Davey, & Harzem, 1974;
Meltzer & Brahlek, 1970).

But if different magnitudes are intermixed
interval by interval, then even in the steady
state, wait time is longer following longer
(larger) reinforcers (Staddon, 1970). This
result is also predicted by the model. More-
over, as in the data, the effect is due more
to shortening of wait time after shorter-than-
average reinforcers than to lengthening af-
ter long ones. The effect of a ninefold
change in reinforcer amount (duration) is
similar to results from pigeons. Figure 7
shows predictions of the model compared
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Fig. 8. Response of the model to two impulse intervals. The baseline was an RID schedule with t 1 T 5 45 s.
Data (light lines with markers) are 10-day average normalized wait times of 3 individual well-trained pigeons in 20
successive IRIs aligned at the two impulse intervals. The two 15-s impulse IRIs occurred randomly in each experi-
mental session against a background of 45-s IRIs. The heavy solid line is the prediction of the 14-unit MTS model
described in Figure 6.

with unpublished data from our laboratory
(see also Staddon, 1970): Both curves (data:
variable; model: variable) have a positive
slope, but the model effect is larger. That the
model predicts the difference between the
constant and variable conditions is probably
more significant than the quantitative differ-
ence between model and data in the variable
condition, which might well be attributable
to a nonlinear relation between measured
reinforcer magnitude and the input variable,
X1, of the model (cf. Epstein, 1981, 1985).
Doubling reinforcer magnitude may less
than double X1, so that assuming propor-
tionality between X1 and reinforcer magni-
tude causes the model to overestimate rein-
forcement-magnitude effects.

This model is not designed to deal with
concurrent timing of multiple intervals. How-
ever, when noise is added to the threshold
(Equation 9) and responding is assumed to
continue at a steady rate after the first re-
sponse in each interval, averaged steady-state
performance on a mixed FI x FI y does show
two peaks. But the details of the bimodal re-
sponse distribution do not conform closely to
published data (e.g., Catania & Reynolds,
1968).

Dynamics

If we wish to model dynamics, then the ap-
propriate comparison is with data from indi-
vidual organisms, because averaging across
organisms that may differ in the temporal de-
tails of their responses to transient inputs can
produce an average that is unrepresentative
of any individual, even though the temporal
response pattern may be similar across indi-
viduals.

Figure 8 shows data from 3 pigeons ex-
posed to a 45-s baseline RID schedule with
two shorter (15-s) IRIs presented at a random
point in each session. Records from each ses-
sion were aligned at the two probe intervals
(Cycles 4 and 5), and the wait times in each
interval were averaged for each animal (light
lines with markers). The heavy line (MTS)
shows the response of the 14-unit model that
generated the traces in Figure 6. The model
shows a slightly larger drop in wait time to
the second of the two short intervals, but oth-
erwise model and data are similar.

This pattern is continued for six other dy-
namic schedules in Figures 9 and 10. In each
case, the model (with the same parameters as
before) duplicates the pattern shown by in-
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Fig. 9. Response of the model to three impulse patterns. Top: two short (15-s) IRIs separated by eight baseline
(45-s) IRIs. Middle: eight short IRIs. Bottom: eight short separated by four baseline IRIs. Light lines 1 markers: data
from 3 individual pigeons. Heavy line: predictions of the MTS model described in Figure 6.
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Fig. 10. Response of the model to three impulse patterns. Top: step-down, from 15 s to 5 s. Middle: step-up, from
a 15-s IRI baseline to 45 s. Bottom: a single sinusoidal cycle. Light lines: data from 3 individual pigeons. Heavy line:
predictions of the MTS model. Light lines 1 markers: data from 4 individual pigeons. Parameters and other details
as in Figure 6.



117TIMING DYNAMICS

dividual pigeons. Note that the model dupli-
cates the gradual increase in waiting time
shown by the data following the upshift in the
eight-close schedule (middle panel, Figure
9). The model also matches the gradual up-
and-down changes in the step-up and step-
down schedules (top two panels of Figure
10). These gradual changes cannot be dupli-
cated by linear waiting. Finally, note that the
model matches the tracking of the sine input
pattern shown at the bottom of Figure 10,
which cannot be duplicated by the diffusion-
generalization model.

In every figure, the MTS model resembles
the behavior of individual animals, not group
averages. The plotted data are also close to
raw observations: Each plotted data point is
the average of just 10 individual observations.
We have not yet looked into fitting the model
to data from individual animals, but the prob-
lem is clear in outline. For simplicity, in all
our simulations we held parameter bi in Equa-
tions 3 and 5 constant and equal to .04. The
effect of varying this parameter is mostly to
change the scale of the trace, that is, an ap-
proximately proportional effect on the abso-
lute value and relatively little effect on pro-
portional change caused by each reinforcer.
Parameter l, on the other hand, determines
the relative importance of the fast (low j) or
slow integrators in the chain. For example,
with l 5 0.2, the first three a values are .1813,
.3297, and .3412, whereas with l 5 0.8 they
are .5507, .7981, and .9093. The second sys-
tem will take longer to stabilize and will re-
cover more slowly after extended training
than the first. Our impression is that, overall,
the system is relatively insensitive to changes
in parameters b and l, especially if the chain
is long (i.e., more than 8 or 10 units).

Figure 11 (top) shows the response of the
model to a random VI schedule. Light lines
show successive IRIs; the heavy gray line at
the bottom shows the wait times predicted by
the MTS model. The relation between mean
wait time and VI value is shown for a range
of VI values in Figure 12. As VI duration in-
creases, mean wait time increases to an as-
ymptote of about eight time steps, for VI val-
ues ranging from 50 to 200 time steps. Wait
time predicted by the model is short, but not
as short as available data, which is on the or-
der of 1 to 2 s rather than 5 to 7 s over this
range (Baum, 1993, Figure 6). The model

predicts that wait time is essentially indepen-
dent of VI value over much of the range that
is similar to the data, which show that ‘‘[wait
time] increases with interreinforcer interval
in a roughly linear fashion, but with a slope
far less than 1.0’’ (Baum, 1993, p. 252).

In the absence of threshold noise (h 5 0
in Equation 9), the predicted correlation be-
tween IRI N and the succeeding wait time N
1 1 is positive, .92, slightly less than 1, which
would be the value predicted by linear wait-
ing. (The reason this model differs from lin-
ear waiting is that the trace is not identical
from interval to interval, but changes accord-
ing to the recent system history.) The bottom
panel of Figure 11 shows the relation with
noise (e, with a mean of 0 and a range of .04,
the values used in all other simulations) add-
ed to the threshold. The correlation between
IRI N and wait time N 1 1 drops from .92 to
.34. We have not been able to find published
data with which to compare this correlation,
but in an unpublished study, J. J. Higa (per-
sonal communication, July 18, 2001) present-
ed pigeons with two random-interval sched-
ules (RI 15 s and RI 60 s) for 10 days in a
counterbalanced order, and found correla-
tions between obtained IRI (the results for
schedule IRI are similar) in interval N and
wait time in interval N 1 1 ranging from .037
to .108 (RI 15 s) and from .002 to .113 (RI
60 s). The correlation with obtained IRIs
ranged from .038 to .134 (RI 15 s) and from
.011 to .058 (RI 60 s). None of these is sig-
nificantly different from zero. The correla-
tions predicted by the MTS model, though
small and much lower than those predicted
by linear waiting, seem to be somewhat high-
er than those actually observed on random
VI schedules.

CONCLUSION

The tuned-trace MTS timing model, com-
bined with a one-back response threshold-set-
ting rule, can duplicate the main properties of
rapid timing effects on interval schedules as
well as the major steady-state effects such as
proportional and scalar timing, skewed wait-
time distributions, and the effects of variable
reinforcer magnitude. It also simulates the
short wait times and absence of temporal
tracking on random VI schedules, although
empirical IRI versus wait-time correlations are
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Fig. 11. Top: light line: successive IRIs on a random VI schedule. Heavy gray line: wait times predicted by the
MTS model with .04 threshold noise (h 5 .04 in Equation 9). Bottom: scatter plot showing the predicted relation
between IRI and wait time in the following interval.

lower than those predicted by the model. No
previous theory has tackled all these results.
Linear waiting (Wynne & Staddon, 1988) can
duplicate temporal tracking but cannot ac-
count for gradual adjustment on step-up and

step-down schedules or for the steady-state We-
ber law result, and, contrary to data, predicts
high IRI versus wait-time correlations on VI
schedules. The diffusion-generalization model
(Staddon & Higa, 1991) can account for some
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Fig. 12. Mean steady-state wait time predicted by the
model for a range of random VI schedules from 10 to
200 time steps. Each point is the average of 1,000 inter-
vals.

of these effects but fails to duplicate one-back
tracking on cyclic and progressive schedules.

The fits to data in this paper are not typical
of timing studies. Usually, an orderly but of-
ten highly averaged data set from a psycho-
physically based procedure, such as the peak-
interval procedure, is fitted exactly by a
model with perhaps five parameters (e.g.,
Gibbon & Church, 1990). We have approxi-
mated this procedure only for steady-state
predictions (Figure 6). But for the dynamic
predictions, we have attempted to match the
organism’s pattern of response to a wide
range of dynamic interval procedures: im-
pulse, step-up and step-down, sine-cyclic, and
VI or RI schedules. In these cases, our aim is
not so much to match the details of average
performance as to match the range of per-
formances of individual animals. To the ex-
tent that we have succeeded, the data from
our simulations will not be readily distin-
guishable from data of the individual animals.
Simulations of this sort cannot easily be sub-
jected to statistics. Indeed, it is not at all clear
just what statistics would be appropriate.

This method is not without risk. For ex-
ample, suppose there is a series of numbers
that is apparently random (but really derives
from a chaotic process). Ignorance of the
process means that such a series could not be
distinguished from a random model—one
apparently random series cannot readily be
distinguished from another. But the random
model does not in any sense predict or ex-
plain the series. This is reason to hesitate be-

fore adding a stochastic component to any
model.

How parsimonious is our account? The full
model has five parameters: M, the number of
habituation units; parameter l, which deter-
mines how the rate parameter aj increases
across units; b, the weighting that determines
how the output of unit M contributes input
to unit M 1 1; j, the response threshold; and
h, the additive noise term. Beyond a mini-
mum of eight or so, the behavior of the mod-
el is not sensitive to the number of units. We
have obtained adequate simulations with sys-
tems from 8 to 14 units. The noise parameter,
h, is necessary only for the predictions of sca-
lar timing (the CoV plot and distributions in
Figure 6) and to reduce the correlation be-
tween IRI and wait time in the succeeding
interval on VI (Figure 11). For most of the
dynamic predictions, therefore, only three
parameters need to be adjusted. In practice,
we left b and j alone and simply explored var-
iations in l. The model has 14 state variables,
which is more than scalar expectancy theory
(two) but considerably fewer than Machado’s
(1997) model (601). It is difficult to know
what to make of these differences.

Limitations of the Model

The present model is deficient in at least
three respects. First, it deals only with wait
time. It says nothing about the pattern of re-
sponding after the first response in an inter-
val. This limitation is shared with most steady-
state timing theories: Scalar timing theory
assumes an off-on-off pattern on the peak-in-
terval procedure, for example, and hence
cannot deal with FI scalloping, which is min-
imal after long training at short intervals but
seems to persist at longer intervals (cf.
Schneider, 1969; Staddon, 2001, pp. 317–
319). One must choose where to begin, and
wait time is perhaps the simplest, most direct
(i.e., requiring the least averaging), and one
of the most orderly measures of interval tim-
ing.

The second limitation is a consequence of
the first: In its present single-threshold form,
the model cannot deal with the concurrent
timing of multiple intervals. On mixed FI FI
schedules, for example, the response-rate dis-
tribution following each reinforcement often
shows two peaks, corresponding to the two
IRIs (e.g., Catania & Reynolds, 1968; Macha-
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Fig. 13. Rats’ mean wait time during a ‘‘short square wave’’ (SSW) in which IRIs changed one per session from
120 to 30 and back to 120 s and a ‘‘long square wave’’ (LSW) condition in which the IRIs changed from 120 to 480
and back to 120 s. Open symbols: data from individual rats; filled symbols show the actual IRI duration. Heavy solid
lines: mean for all animals. Dashed vertical lines mark the start and end of a transition (from Higa & Staddon, 1997,
Figure 10).

do, 1997). Nevertheless, as we mentioned ear-
lier, with an additional assumption to allow
responses after the first in each interval, the
model can duplicate the qualitative features
of responding on mixed FI schedules. The
present model needs some additional as-
sumptions—a ‘‘stop’’ as well as a ‘‘start’’
threshold, or some other provision to ac-
count for the effects of nonreinforcement as
well as reinforcement—to duplicate these
data in full quantitative detail.

Third, the model cannot account for the

kind of dramatic failure to track shown in
Figure 13. The figure is taken from Higa and
Staddon (1997, Figure 10); it shows wait time
in successive intervals on two schedules: a
‘‘short square wave’’ (SSW), in which IRIs
changed once per session from 120 to 30
and back to 120 s, and a ‘‘long square wave’’
(LSW), in which the change was from 120 to
480 and back to 120 s. The animals (here
rats) show the expected gradual tracking on
the SSW condition (cf. with Figure 9, center
panel, here) but completely fail to track the
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Table 1

Correlation between wait time and duration of preceding
IRI on first exposure (first 10 IRIs) to random variable-
interval 15 s or 60 s for 4 pigeons.

Bird RI 15 s RI 60 s

18a

299a

931b

174b

.032

.524

.636

.213

.472

.223

.374

.602
a Received VI 60 s then VI 15 s.
b Received VI 15 s then VI 60 s.

long intervals in the LSW condition, a result
that has also been obtained under chronic
conditions with pigeons (Staddon, 1967).
We are not sure whether this result is limited
to the relatively long IRIs studied in this ex-
periment. Some published data (Higa et al.,
1991) and unpublished work in our labora-
tory suggest that animals may track when ini-
tially exposed to a mixed-interval schedule,
but then cease tracking and settle down with
short wait times after every reinforcer. In
some cases, failure to track seems to reflect
a persistent effect of a history that includes
a high proportion of short intervals. It may,
perhaps, be related to an earlier finding that
short IRIs sometimes have more persistent
effects than long ones do (Wynne & Stad-
don, 1992). A tendency to respond at a short
postfood time necessarily preempts a ten-
dency to respond at a later time, so that even
a weak ‘‘respond short’’ tendency may over-
ride a stronger tendency to respond later.
Our model assumes an instantaneous
change in response threshold from IRI to
IRI, but the preemption property of short
times means that even a weak residual ten-
dency to respond short may be sufficient to
duplicate the effect shown in the bottom
panel of Figure 13. Whatever the persistence
differences between short versus long IRIs,
they must be consistent with the apparently
contrary fact that the effect of a single short
IRI seems to be limited to the next interval
(cf. Figures 2, 7, and 8).

There is a procedural asymmetry between
step-down square-wave schedules, which pi-
geons and rats do track, and step-up sched-
ules, which they do not. If the animal adjusts
its wait time upwards during the long part of
the LSW (short-long-short) series, it is likely
to overshoot the first short interval when the
short series resumes, that is, wait time may be
longer than the programmed interval so that
the animal responds after the reinforcer has
set up. VI schedules, on which a very short
interval may follow a long one, confront the
organism with the same problem. Perhaps
this overshooting, detected by the animal as
immediate reinforcement of the first re-
sponse in the interval, somehow energizes re-
sponding and shortens wait time in the suc-
ceeding intervals.

A process like this presumably depends
on some experience with overshooting.

Hence, we might expect to see much better
tracking of IRI by wait time very early in an
animal’s exposure to a VI schedule. This is
indeed what we found in the unpublished
experiment by Higa described above. For
the first 10 intervals of exposure to either
an RI 15-s or an RI 60-s schedule, the cor-
relations between obtained IRI (N) and
wait time (N 1 1) are shown in Table 1. All
are positive and substantially larger than
the correlations for the entire training pe-
riod described earlier.

Despite these limitations, the wide range
of data that are well fitted by the MTS tim-
ing model strongly suggests that two prop-
erties of the model—a slow process, which
we have modeled as a tuned trace, and a
rapid process, represented by instantaneous
threshold setting by reinforcement—repre-
sent real characteristics of the interval-tim-
ing process.
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APPENDIX

STEADY-STATE BEHAVIOR OF
THE MTS MODEL ON FI SCHEDULES

We suppose that after fixed intervals theks
timing system has reached a steady state, so
that trace value, n(t) (Equation 6 in the text),
is a periodic sequence:

n(kI 1 t) 5 n[(k 11)I 1 t],

t 5 0, 1, . . . , I 2 1; k $ k ,s

where k is an integer greater than and I isks
FI length.

Computation of Periodic Inputs X (I)i

In this section, we compute the values of
the input signals at the moment of re-X (t)i
inforcement. When the time-marker signal
(the cascade input is nonzero only at re-X )1
inforcement, it is easy to prove that the inputs
to later units, are also nonzero onlyX (t),i
during reinforcement. In the steady-state re-
gime, the integrator outputs are periodic.Vi
We denote by the value of the outputV (I)i

at the moment of reinforcement and byVi
the value of the output in the timeM (I) Vi i

step just before reinforcement:
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V [(k 1 1)I] 5 V (kI) 5 V (I)i i i

V [(k 1 1)I 2 1] 5 V (kI 2 1)i i

5 M (I), k $ k .i s

With this notation, and from Equation 5 at
time n 5 kI,

V (kI) 5 a V (kI 2 1) 1 b X (kI),i i i i i

one can infer that the inputs are peri-X (t)i
odic in the steady-state regime

X [(k 1 1)I] 5 X (kI) 5 X (I),i i i

because and are constant in time.V (I) Mi i
From the previous theory and the integrator
equation, we can write

V (I) 5 a M (I) 1 b X (I)i i i i i

I21V (kI 1 I 2 1) 5 M (I) 5 a V (I).i i ii

After some algebraic manipulations, the re-
lation among and isV , M , Xi i i

biV (I) 5 X (I)i iI1 2 ai

M (I) 5 c (I)X (I), X(I),i i i

I21b ai iC (I) 5 , i 5 1, 2, . . . , M.i I1 2 ai

From these equations and Equation 4, we can
show using recursion that the unit inputs Xi
in the steady-state regime are

i21
[1 2 c (I)]X (I),P j 1

j51 if ∀ j c (I) , 1jX (I) 5i

0, if ∃ j c (I) $ 1,j
j 5 1, 2, . . . , i 2 1.

In our computer simulation we used a bi-
nary reinforcement sequence 5 1. In-X (I)1
put is nonzero if every term j 5 1, 2,X c (I),i j
. . . , i 2 1, is less than one. This might not
be the case for some combination of a , b ,j j
and I. In such a case is set to zero. InputXi

starts from zero [if any j 5 1, 2,X (I) c (I),1 j
. . . , i 2 1, is greater than one], and increases
monotonically to unit asymptote.

Computation of MTS Trace n

From Equation 5 in the steady-state regime,

V (kI) 5 a V (kI 2 1) 1 b X (kI)i i i i i

V (kI 1 t) 5 a V (kI 1 t 2 1),i i i

t 5 1, 2, . . . , I 2 1, k $ ks

and the relations

V (I) 5 V (kI), M (I) 5 V (kI 2 1),i i i i

X (I) 5 X (kI),i i

we can write

V (I) 5 a M (I) 1 b X (I)i i i i i

V (kI 1 1) 5 a V (I),i i i

tV (kI 1 t) 5 a V (I),i ii

t 5 1, 2, . . . , N 2 1.

The trace signal, n(t), is computed as the sum
of integrator outputs Vi

M M
tn(kI 1 t) 5 V (kI 1 t) 5 V (I)a ,O Oi i i

i51 i51

k $ k , t 5 0, 1, . . . , I 2 1.s

The numbers defined at 5 ,V (I), V (I) V (kI)i i i
k $ represent the integrator outputs at thek ,s
instant of reinforcement. From the above
equations it follows that values areV (I)i

b1V (I) 5 X (I)1 1I1 2 a1

i21 bi [1 2 c (I)]X (I),P j 1I1 2 a j51i
if ∀ j c (I) , 1jV (I) 5i

0, if ∃ j c (I) $ 1,j
i 5 2, 3, . . . , M

I21b aj j
c (I) 5 .j I1 2 aj

Thus, starts with a value of zero, increas-V (I)i
es to a maximum, and declines to an asymp-
tote of value b .i

Computation of Reinforcement Memory (RFM)

Reinforcement memory is just the remem-
bered value of the trace at the instant of re-
inforcement: The value of RFM isn .rft
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RFM(t 1 1)

5 RFM(t) 1 X (t)[n(t 2 1) 1 he(t)1

2 RFM(t)],

where is the reinforcement sequence, nX (t)1
is the trace value, e(t) is a noise series with
zero mean and unit dispersion, and h is a
constant (see Equation 9).

In the steady-state regime we have

RFM(kI) 5 n(kI 2 1) 1 he(kI)

RFM(kI 1 t) 5 RFM(kI),

t 5 1, 2, . . . , I 2 1, k $ k .s
Using the previous notation, one can write
the RFM signal as

M
RFM(kI) 5 M (I) 1 he(kI)O i

i51

RFM(kI 1 t) 5 RFM(kI),

t 5 1, 2, . . . , I 2 1.

The RFM signal is constant between rein-
forcements and is a stochastic variable at the
moment of reinforcement. RFM mean is
equal to the sum of the numbers 5M (I)i

(kI 2 1), k $ because e(t) has a meanV k ,i s
equal to zero

M
E[RFM(t)] 5 E M (I) 1 E[he(t)]O i[ ]i51

M
5 M (I).O i

i51

A number representing the value ofM (I),i
output before reinforcement, starts with aVi
value of zero, increases to a maximum, and
decreases to an asymptote of zero. The values
of are given byM (I)i

M (I) 5 c (I)X (I)1 1 1

i21
c (I) [1 2 c (I)]X (I),Pi j 1

j51
if ∀ j c (I) , 1jM (I) 5i

0, if ∃ j c (I) $ 1,j
i 5 2, 3, . . . , M

I21b aj j
c (I) 5 .j I1 2 aj


